
Automated Exploratory
Testing with Defined
Coverage

Andreas Ulrich
Siemens Technology, Munich, Germany
andreas.ulrich@siemens.com

mailto:andreas.ulrich@siemens.com

Challenges in continuous testing

• Lack of testability support in products
• Required to enable automated testing

• Lack of standard tools
• In-house test automation still common practice

• Lack of faster feedback loops
• Need to gather feedback from tests in real-time; short test execution time

• Lack of testing infrastructure
• Test environments need to run 24/7 and under repeatable conditions

• Test data management
• Centrally managed test data to get consistent test results

• Scalability issues
• Due to complex systems and the need for large concurrent test sessions

Source: Richa Agarwal, Common Challenges in Continuous Testing, August 24, 2020

Page 2

FOCUS

Unrestricted | © Siemens 2022 | A. Ulrich | Siemens AG | 2022-11-04

https://testsigma.com/blog/common-challenges-in-continuous-testing/

Exploratory
testing

James Bach: “Testing is an
exploratory process. It’s not just
sometimes exploratory; it is
inherently exploratory.”

Exploratory Testing is defined
as simultaneous
• Learning,
• Test design and
• Test execution.

Page 3Unrestricted | © Siemens 2022 | A. Ulrich | Siemens AG | 2022-11-04

Testing vs Checking

Page 4

Te
st

in
g

C
he

ck
in

g

Exploratory testing informal,
decided moment by moment by

the tester*

Scripted testing formal,
determined by someone else or

at some earlier time*

Can
we
blur
the
line
?

* James Bach, https://www.satisfice.com/exploratory-testing

Unrestricted | © Siemens 2022 | A. Ulrich | Siemens AG | 2022-11-04

Adaptive testing to automate exploratory tests

• Testing of a self-contained software component

• Only the component API is accessed black-box
test

• Scenario tests
• Structured sequence of predefined test

commands

• Tester reacts to SUT responses at runtime
• Selection of next test command according to an

overall test goal + randomization

Page 5

Given: Set of test commands

var tcmd = Reset();
while(true)
{

tcmd.Invoke();
tcmd = SelectNext();

}

Unrestricted | © Siemens 2022 | A. Ulrich | Siemens AG | 2022-11-04

Test commands

A test command = SUT interaction + local state
update; it follows the “4-As” pattern (extension of
“3-As” as known in unit testing)
• Arrange: prepare input parameters for SUT call
• Act: perform SUT call
• Assert: validate correctness of returned data
• Adapt: update local state in tester

A test command is conditioned
• A condition describes the state that enables the test

command
• Finding the right condition and state representation

is a creative, exploratory act
• Test commands form a guarded command language

Page 6

[Condition(true)] TPush()
{ sut.Push(x);

assert(sut.Length, i+1); i++; }

[Condition(i > 0)] TPeek()
{ sut.Peek();

assert(sut.Length, i) }

[Condition(i > 0)] TPop()
{ x = sut.Pop();

assert(sut.Length, i-1); i--; }

Example: Stack

Unrestricted | © Siemens 2022 | A. Ulrich | Siemens AG | 2022-11-04

Adaptive testing applied in practice

Test goal: coverage over test commands

When is the set of test commands covered?
• Syntactical coverage over test command definitions
 Counting test commands, pairs of test commands etc.

• Semantical coverage over states reached in test exec.
 Counting states

In practise, different goals are chosen to configure about 5
test runs lasting 10 min or less
• Each test run is different due to randomization
• Able to detect deep state failures
• Remain effective over the entire DevOps cycle

Page 7 Unrestricted | © Siemens 2022 | A. Ulrich | Siemens AG | 2022-11-04

What difference does it make – Example 1: Deep
state failures
• 5 adaptive tests detected a

failure that 3453 unit tests and
1084 hard-coded integration
tests were unable to find!

• Adaptive tests remain effective
in finding failures over the entire
development cycle

Page 8Unrestricted | © Siemens 2022 | A. Ulrich | Siemens AG | 2022-11-04

What difference does it make – Example 2:
Performance degradation

Tracking of the execution time
of test commands
• Within the same test run
 Reliability tests

• Over multiple test runs over
time
 Regression tests

Expectation on execution times
• Constant
• Proportional
• Learned

Page 9

Repeated execution times (in µsec)
of the same test command
in a single test run.

Unrestricted | © Siemens 2022 | A. Ulrich | Siemens AG | 2022-11-04

Common
strategies in
testing
Detect failures until
resources spent

Vs

Gain confidence through
covered behaviour

Page 10

Gain territoryBody count

Unrestricted | © Siemens 2022 | A. Ulrich | Siemens AG | 2022-11-04

Test Model, System Model, and Exploration Model

Page 11

System Model
(unknown)

Test Model
(expected)

Exploration
Model

Property that
the system doesn’t have
Cannot be verified, unreachable

Derivation from
expected behaviour
(1) System failure
(2) Invalid property,
i.e. wrong model

Unrestricted | © Siemens 2022 | A. Ulrich | Siemens AG | 2022-11-04

Adaptive testing with learning

Model concepts
• Test model set of test commands capturing

system properties
• Exploration model is learnt from executions

Test goals
• Provide evidence that properties are satisfied
• Maximise coverage of exploration model

Test execution
1. Collect information about test commands
2. Learn model from executed test commands
3. Decide at runtime about next test commands
4. Run test commands against system

Page 12

(4) Is
tested

against

Test Agent

(1) Collects runtime
information from

(3) Guides
execution of

Exploration
Model

(2) Learns

System

Test Model
(executable)

Captures expected
behaviour of

Unrestricted | © Siemens 2022 | A. Ulrich | Siemens AG | 2022-11-04

Learning and inference of state machines from
test execution traces
Trace: Execution sequence of inputs and outputs

• I/O trace: sequence of input/output pairs
• Positive/negative samples: input sequence with evaluation of

reached output
• Set of traces form a Prefix Tree

Inferred machine reproduces all traces from the training set with
fewer states

• I/O traces Moore machine
• Pos/neg. samples DFA

Learning during the DevOps cycle, continuously
• Passive Collect example traces randomly
• Active Collect traces and derive queries

Page 13

Example:
Input alphabet I = {0, 1}

Sample sets S+ = {011, 101}, S- = {1}

Model inference

Unrestricted | © Siemens 2022 | A. Ulrich | Siemens AG | 2022-11-04

Passive learning and machine inference

Approach
• Database to store test logs from test execution runs
• Test logs interpreted as I/O traces to construct a prefix tree
• Moore machine is inferred from the prefix tree

Adequacy criterion for machine inference
• Preferred: “Identification in the limit”

All traces longer than n can be produced from equivalent
machines

• Realistic:
All traces up to length n can be produced from equivalent
machines

• Approximations to the minimum solution might be good
enough

Page 14 Unrestricted | © Siemens 2022 | A. Ulrich | Siemens AG | 2022-11-04

SUTTester

Learner Inferred
Model

Testlog DB

Passive Learning

offline

Practical example of an inferred machine from a
SW component test

Page 15

• Inference from 544 test runs
• Building prefix tree in 0.754 sec
• Size of prefix tree is 275,881

states

• Inferring Moore machine in
11.312 sec

• Using 682.2 MB of heap memory
• Size of inferred machine is 21

states

Unrestricted | © Siemens 2022 | A. Ulrich | Siemens AG | 2022-11-04

Conclusions

Exploratory testing doesn’t need to stop at scripted tests

Adaptive testing preserves the exploration capability
during runtime

Combining adaptive testing with learning to reach a
defined level of state coverage

Learning helps find optimal solutions to a given coverage
goal utilising:

• Exploration of new SUT behaviour

• Exploitation of learned knowledge

Page 16 Unrestricted | © Siemens 2022 | A. Ulrich | Siemens AG | 2022-11-04

	Automated Exploratory Testing with Defined Coverage
	Challenges in continuous testing
	Exploratory testing
	Testing vs Checking
	Adaptive testing to automate exploratory tests
	Test commands
	Adaptive testing applied in practice
	What difference does it make – Example 1: Deep state failures
	What difference does it make – Example 2: Performance degradation
	Common strategies in testing
	Test Model, System Model, and Exploration Model
	Adaptive testing with learning
	Learning and inference of state machines from test execution traces
	Passive learning and machine inference
	Practical example of an inferred machine from a SW component test
	Conclusions

