

Testing the Untestable Risikobasierte Qualitätssicherung für Machine-Learning Systeme

Prof. Dr. Michael Felderer Institut für Informatik

Universität Innsbruck

Agenda

Motivation

Classical Risk-Based Testing

Testing Machine-Learning-Based Systems

Data Testing

Online Testing

Agenda

Motivation

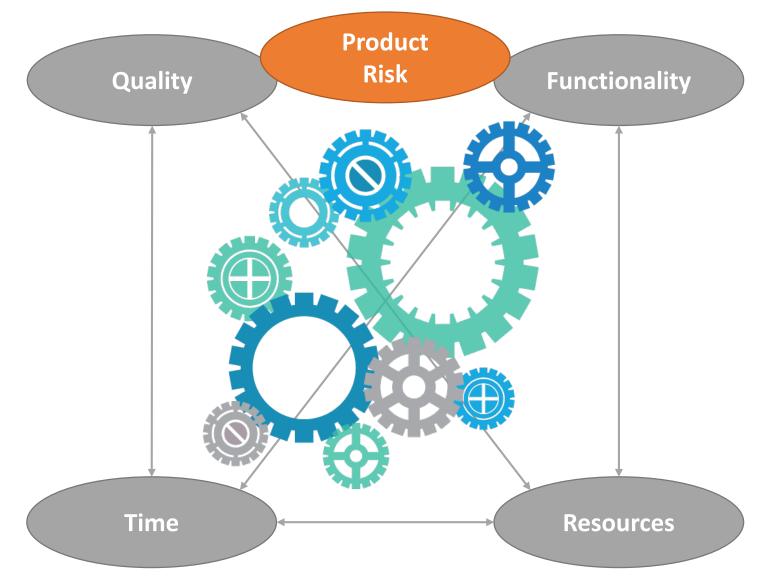
Classical Risk-Based Testing

Testing Machine-Learning-Based Systems

Data Testing

Online Testing

Quality and Risk in Software Development

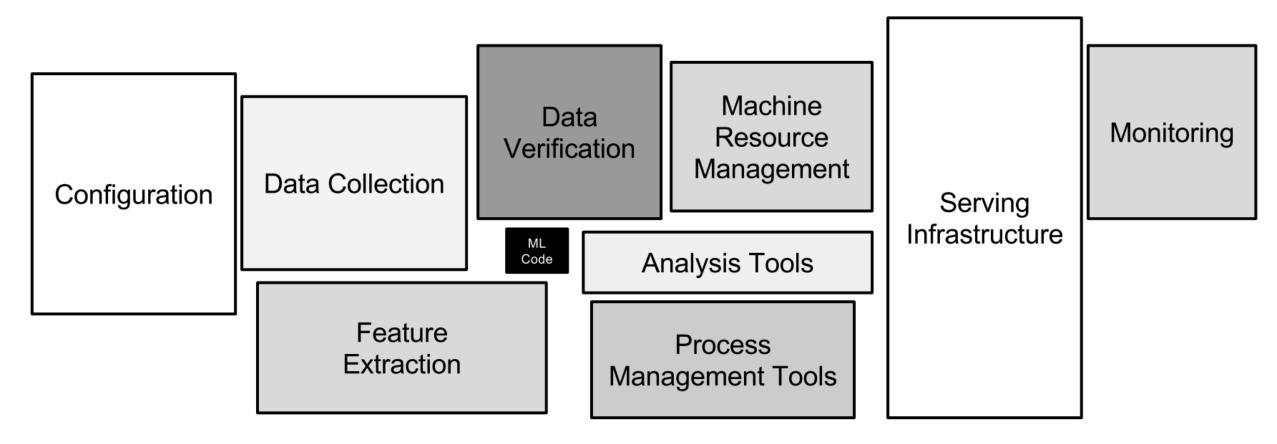


Quality and Risk of ML-based Systems

REUTERS	0 ≡			
TECHNOLOGY NEWS OCTOBER 10, 2018 / 5:12 AM / 2 YEARS AGO				
Amazon scraps secret AI recruiting tool that showed bias against women				
Jeffrey Dastin	⊮ f			
SAN FRANCISCO (Reuters) - Amazon.com Inc'	's (AMZN.O)			

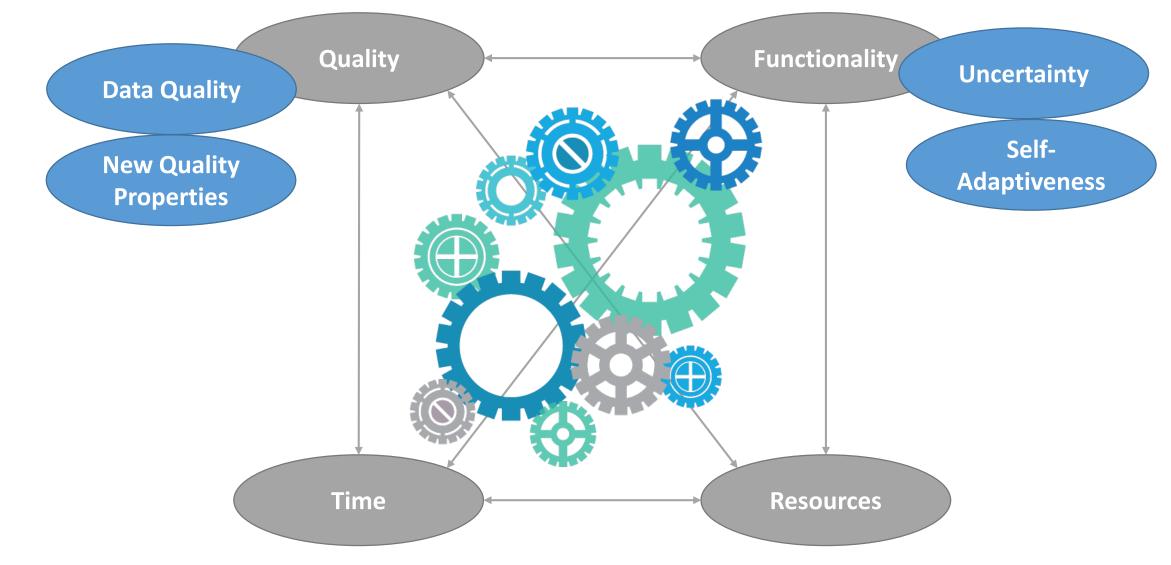
machine-learning specialists uncovered a big problem: their new recruiting engine did not like women.

ML Systems are IT Systems not only Algorithms

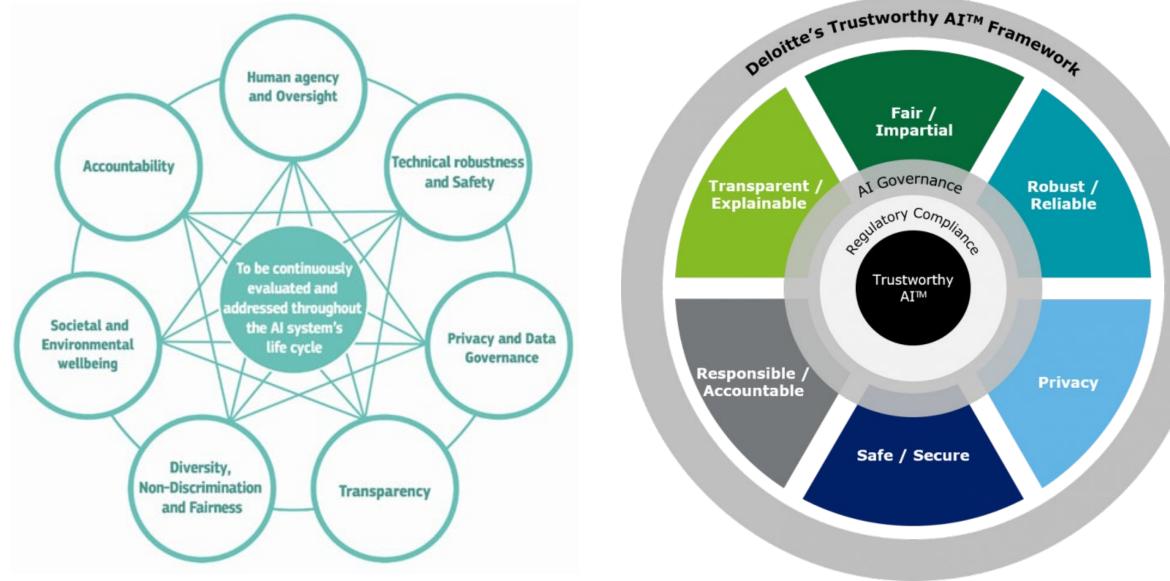


Sculley et al.: Hidden Technical Debt in Machine Learning Systems, NIPS 2012

What Makes (AI)ML-Based Systems Different?



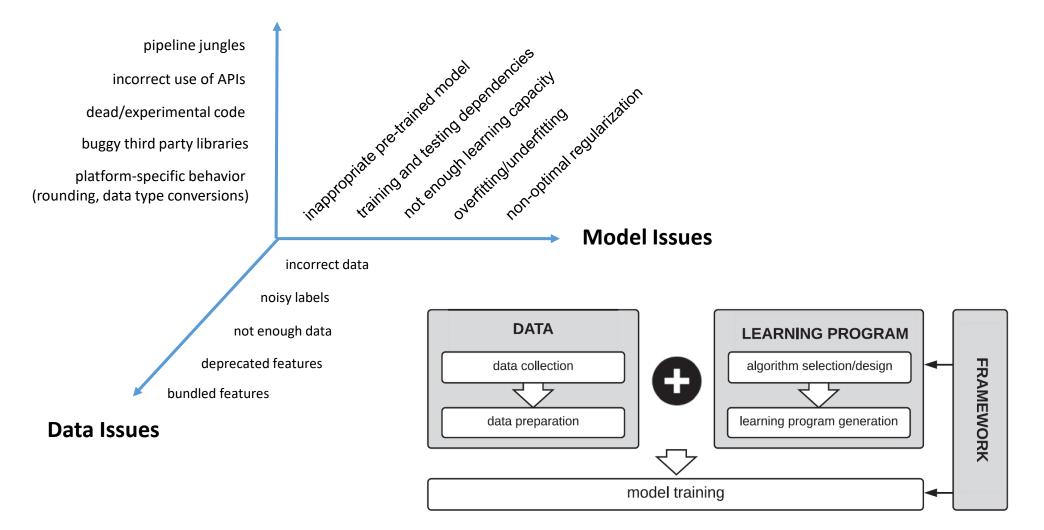
New Quality Properties: Trustworthiness of Al



universität innsbruck

Machine-Learning Systems as Software Systems

Implementation Issues



universität innsbruck Agenda

Motivation

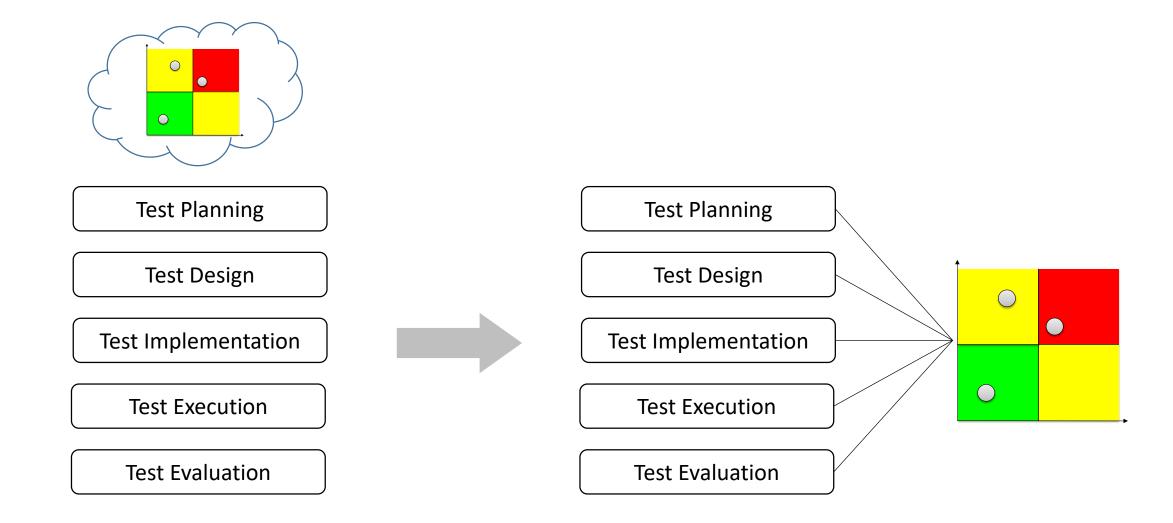
Classical Risk-Based Testing

Testing Machine-Learning-Based Systems

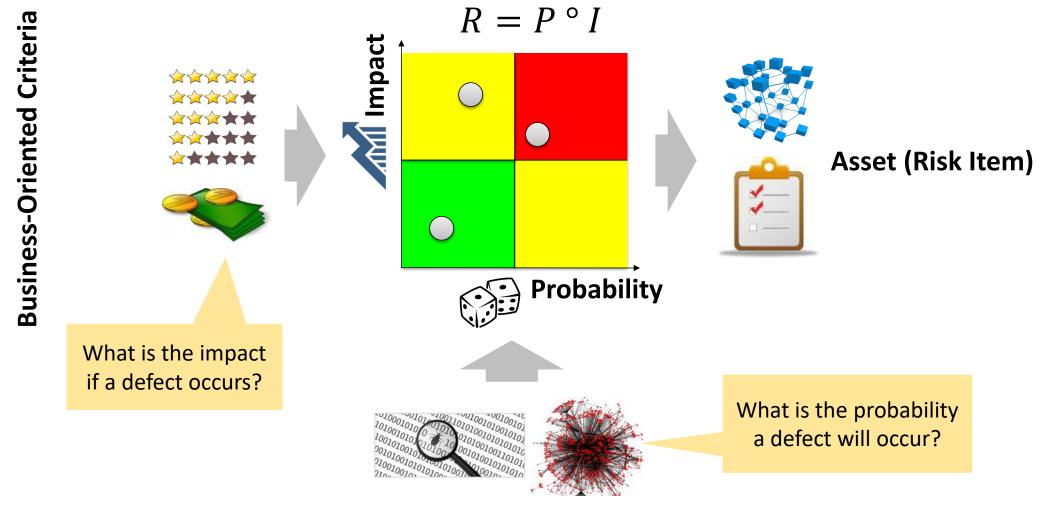
Data Testing

Online Testing

Risk-Based Testing (Risk-Based Quality Assurance)

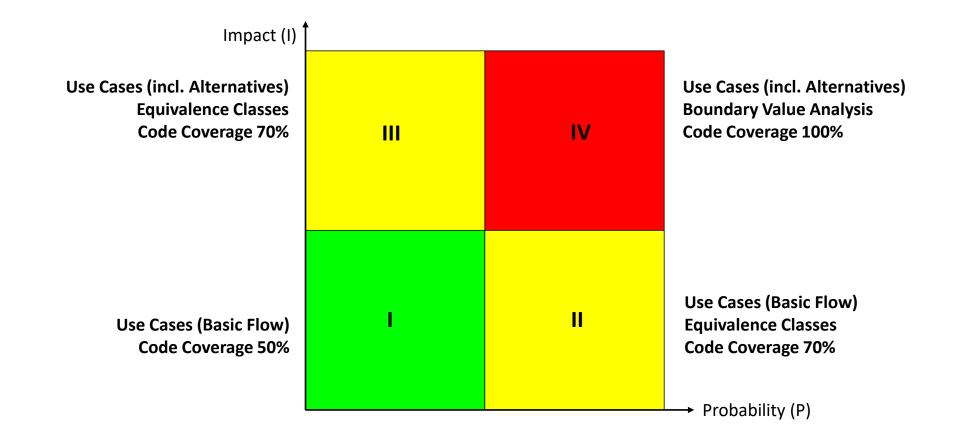


Risk Concept in Software Quality Engineering

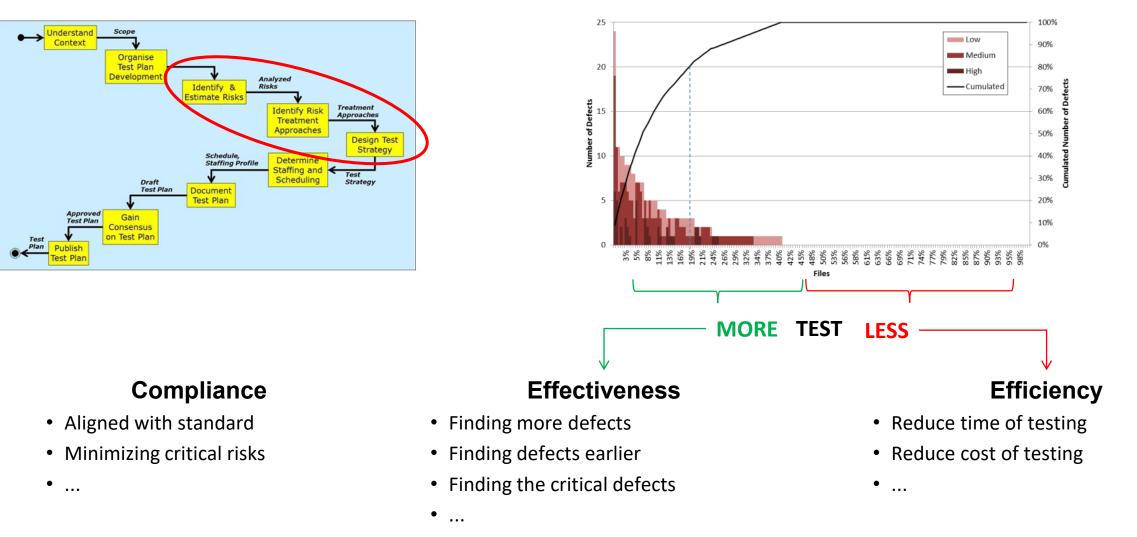


Technology-Oriented Criteria

Risk-Based Test Strategy



Effectiveness and Efficiency of Risk-Based Testing



Agenda

Motivation

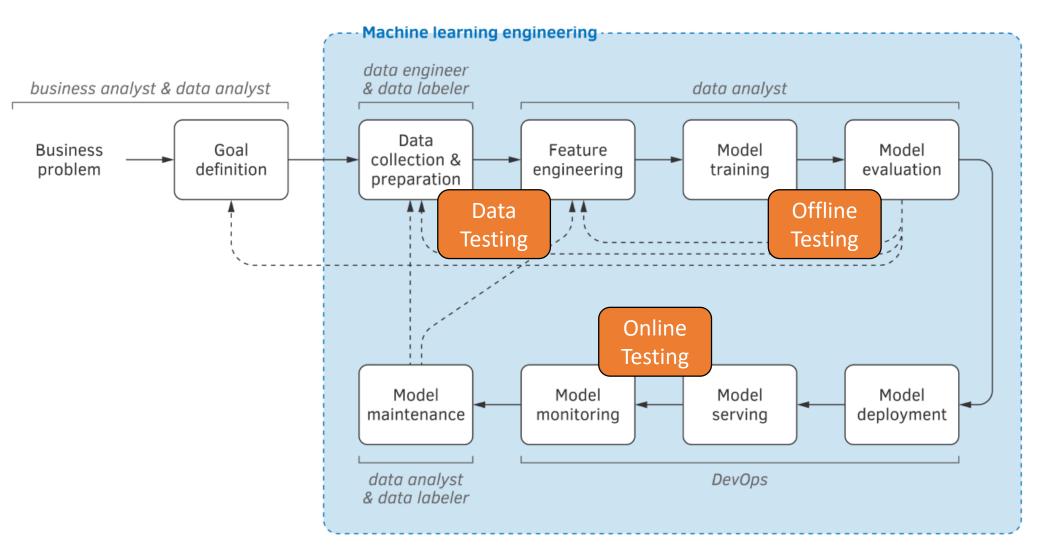
Classical Risk-Based Testing

Testing Machine-Learning-Based Systems

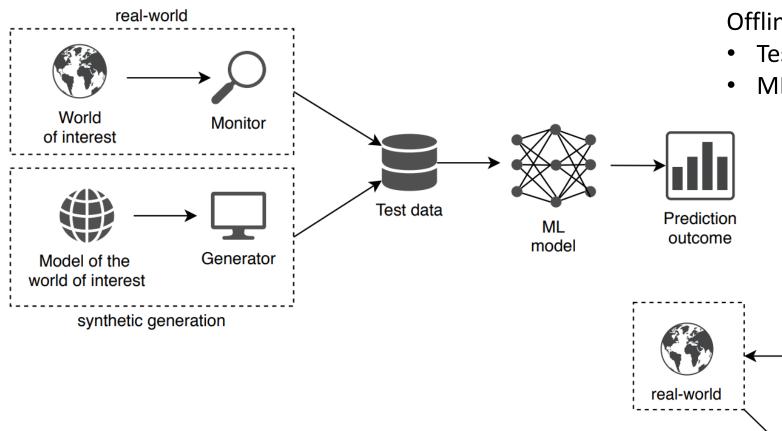
Data Testing

Online Testing

ML Engineering and Testing



Offline and Online Testing



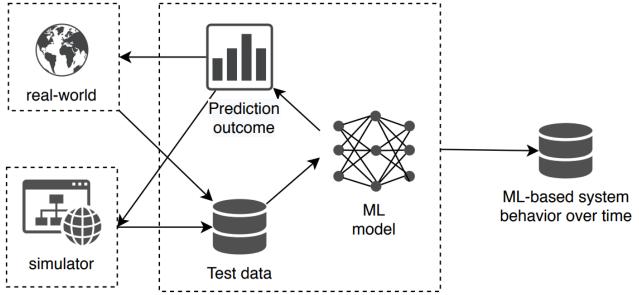
Offline Testing:

- Testing ML model as standalone component
- ML model tested as a unit in open loop mode

Online Testing:

universität innsbruck

- Testing ML model in real or simulated environment
- ML model tested as a unit in closed loop mode

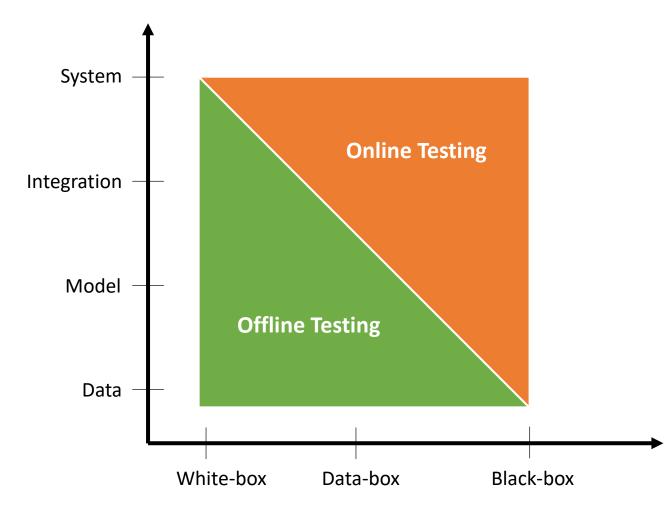


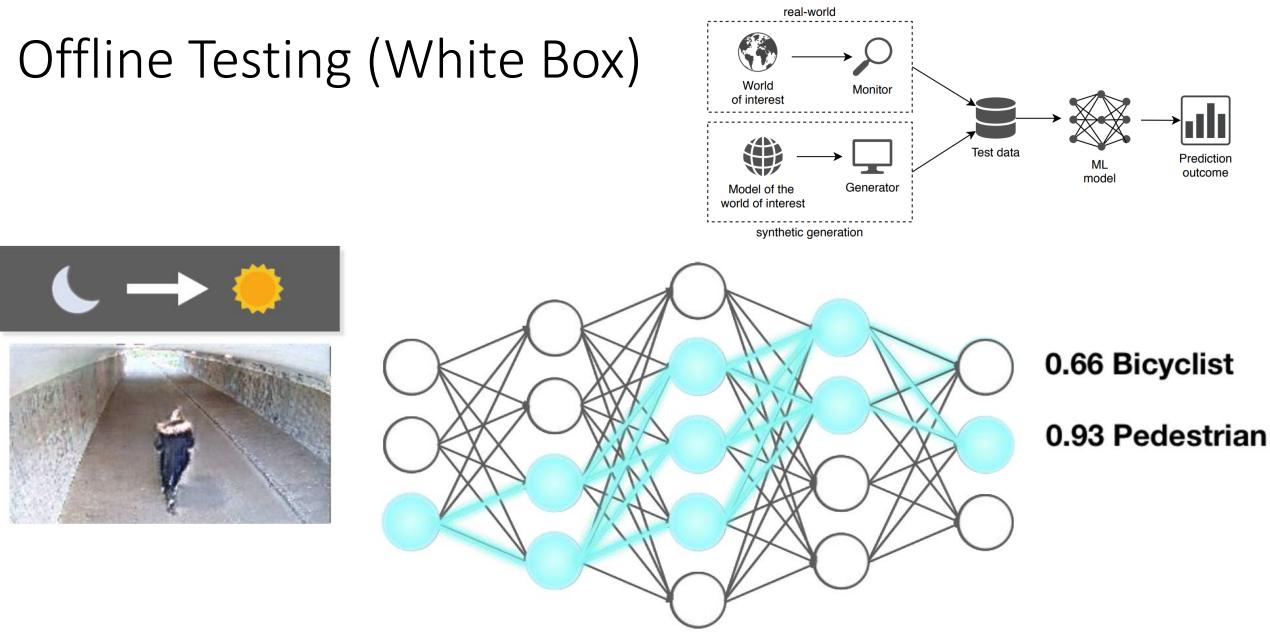
White-Box and Black-Box Testing?

White-box



Offline vs. Online Testing

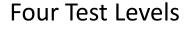




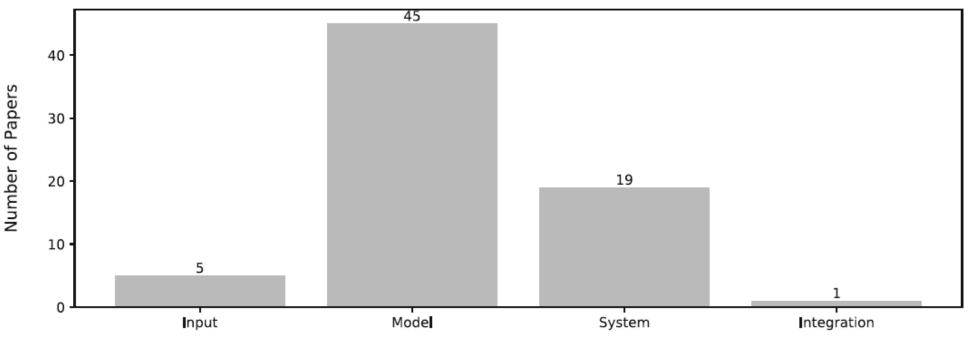
Neuron Coverage is not strongly and positively correlated with defect detection and naturalness.

universität innsbruck

Test Levels for Machine-Learning Systems



- Input Testing
- Model Testing
- Integration Testing
- System Testing



Testing Levels

Agenda

Motivation

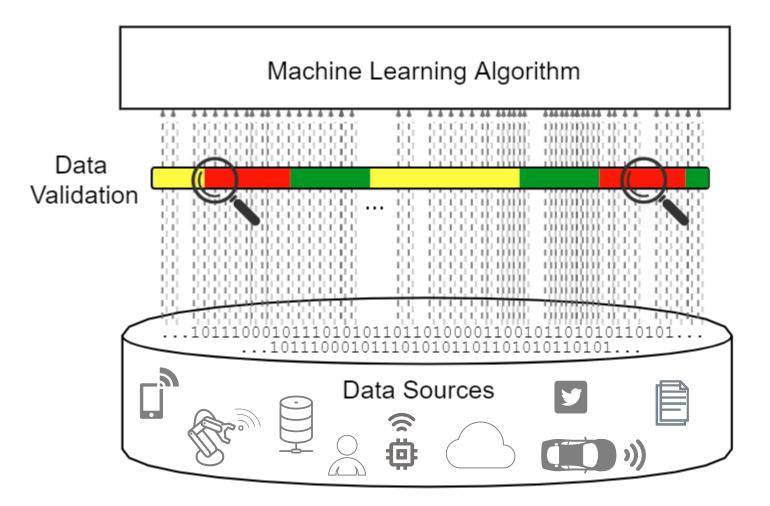
Classical Risk-Based Testing

Testing Machine-Learning-Based Systems

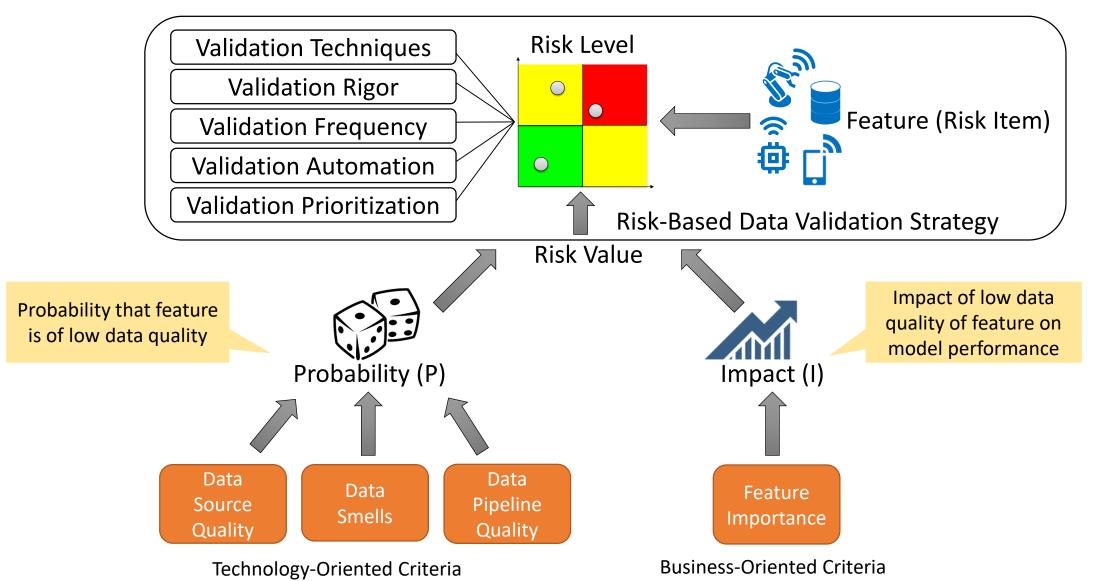
Data Testing

Online Testing

Idea of Risk-Based Data Testing



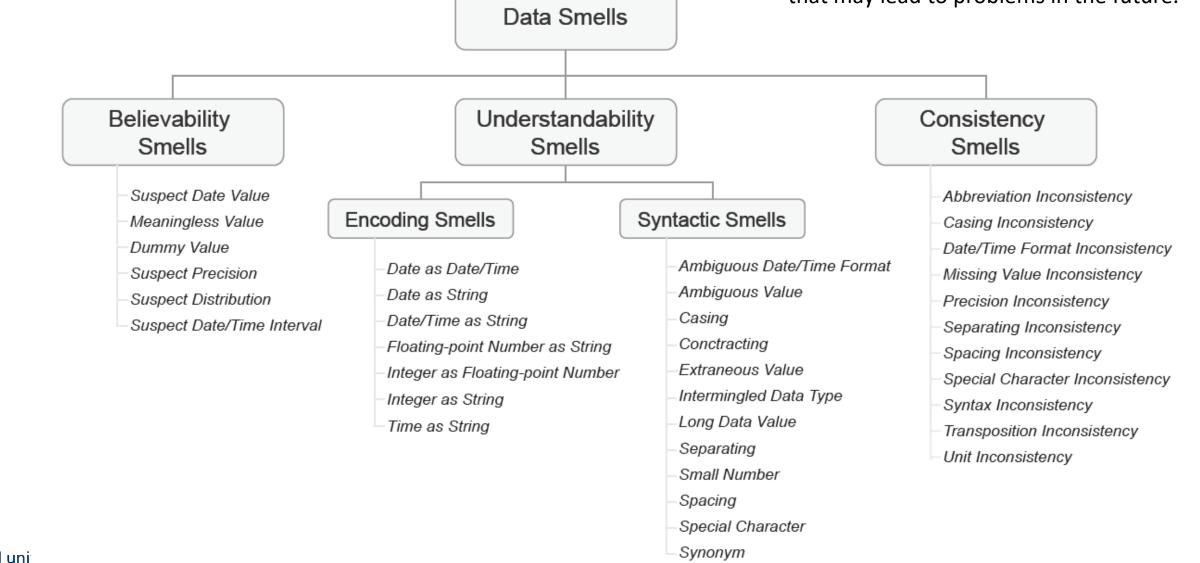
Risk-Based Data Testing Framework



Data Smell Types

innsbruck

Context-independent, data value-based indications of latent data quality issues caused by poor practices that may lead to problems in the future.



25

Example Smells

🖙 Appointme 🚍	🗖 Appointme 🚍	# Age 🖃
5638447	2016-04- 29T00:00:00Z	21
5629123	2016-04- 29T00:00:00Z	19
5630213	2016-04- 29T00:00:00Z	30
5620163	2016-04- 29T00:00:00Z	29
5634718	2016-04- 29T00:00:00Z	22
5636249	2016-04- 29T00:00:00Z	28

🗖 Date 🚍	# Daily Confi ☴	# Total Confi 두
11-Feb	0	3
12-Feb	0	3
13-Feb	0	3
14-Feb	0	3
15-Feb	0	3
16-Feb	0	3
17-Feb	0	3
18-Feb	0	3

Ambiguous Date/Time Format Smell

https://www.kaggle.com/ravichaubey1506/covid19-india

Date as Date/Time Smell

https://www.kaggle.com/joniarroba/noshowappointments

Data Smell Detection Tools

DSD	DATA SMELL DETECTION			Login
 Detection Documentation 	Upload G	Customize		Results
AUTHORS 🛱 Laura Geiger	Smell Results By Column	Names		
Martin Kerschbaumer	DATA SMELL TYPE	TOTAL ELEMENT COUNT	FAULTY ELEMENT COUNT	FAULTY ELEMENT O
	Long Data Value Smell	891	687	[nan, nan, nan, nar
	Casing Smell	891	24	['C23 C25 C27', 'F G
	Integer as Floating Point	891	103	['C123', 'G6', 'C23 C

Rule-based detection

ML Data Smell Detection Home Datasets ML Agents Analyze

Logged in as root. Logout

Data Smell Detection with Machine Learning

LSTM Detection Results

Agent: Sample: Date Smell Classification using LSTMs Dataset: Sample Dataset: LSTM Date Classification

Download Results

LSTM Classification

Shown below is the class distribution of your data as well as examples for each class. By default, the classes are labeled by the corresponding data smells according to the research paper. This can be disabled on the analyze page. If the class distribution does not match up your expectations, please download the corresponding dataset to further inspect the classification.

Class DateTime as String Smell

This class contains 48 total samples, or 3.45% of the total data. See some examples below for what data has been classified in this class.

Class Date as DateTime Smell

This class contains 48 total samples, or 3.45% of the total data. See some examples below for what data has been classified in this class, and w

- "03-MAR-1994 09:57PM+06:00" (100.0%)
- "25-APR-2001 00:14+10:00" (100.0%)
- "11-JUN-1977 02:03:44.0051AM +06:00" (100.0%)
- "18-JUN-2015 09:09:25.0453AM +04:00" (100.0%)
- "20-APR-1999 02:51:26AM+03:00" (100.0%)

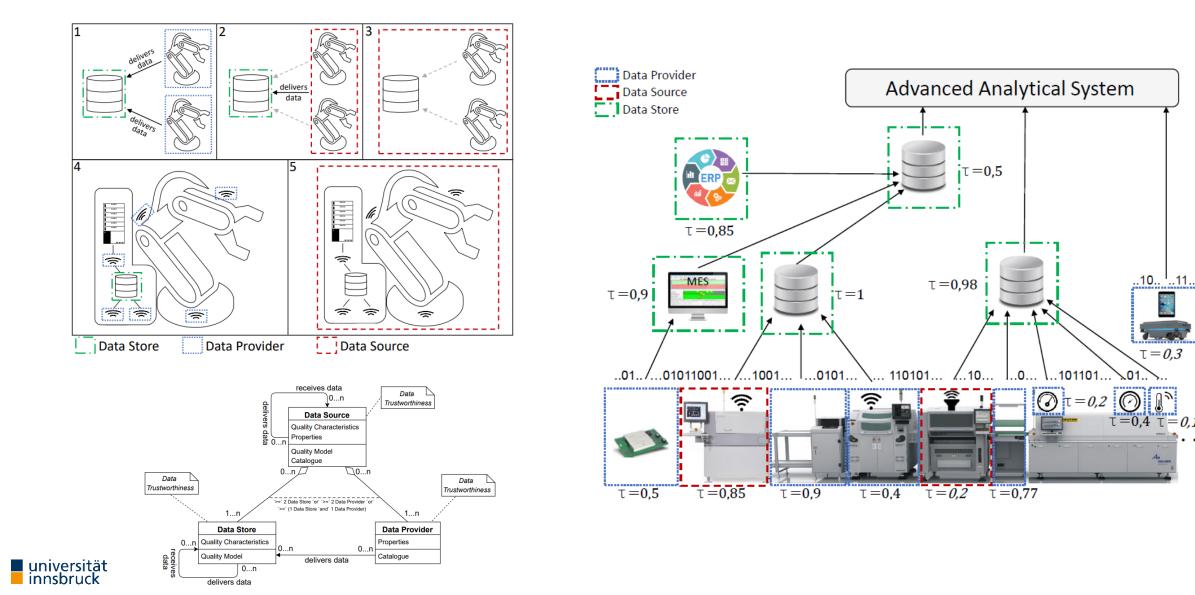
- - 10-APR-1992 00:00+00:00 (99.93%)
 - 15-DEC-1993 00:00+00:00 (99.92%)
- 01-OCT-1999 12:00:00.0000AM +00:00 (100.0%)
- 30-MAR-1995 12:00:00.0000AM +00:00 (100.0%)
- 06-JAN-1976 00:00:00+00:00 (99.93%)

Machine learning-based detection

Data Source Quality Model

Quality Characteristics		Description	Properties and
	Quality Characteristics Description		Subquality Factors
	Denvegentational		Schema Minimality
	Representational Adequacy		Schema Normalization
	Auequacy		Schema Pertinence
Representational	Poprosontational	Degree to which a data store presents data <i>always in the same format and</i> compatible with previous data.	Data Format Variety
Data Store	Consistency		Data Type Variety
	Consistency		Schema Change Proneness
Quality			Data Format Complexity
	Understandability	Degree to which users can understand the data provided by a data store.	Documentation Degree
	onderstandability		Metadata Quality
			Schema Readability
Dynamical Data <i>Ava</i> Store Quality Sec		Degree to which data are easily and quickly retrievable.	Access Maturity
	Accessibility		Operability
			Retrievability
		Degree to <i>which data are available</i> from a data store.	Durability
	Availability		Fault Tolerance
			Recoverability
			Scalablity
			Uptime
	Security	Degree to which access to data for unauthorized persons is restricted by a data	Authentification/Encryption
		store.	Authorization Policy
	Timeliness	Degree to which a data store provides up-to-date data in a timely manner.	Refresh Rate
	Threatess		Response Time
Statical Data Store Quality	Completeness		Schema Completeness
			Schema Correctness
	Contactability	Degree to which a data store provides <i>contact information for further inquiries.</i>	Support Degree
	Trustworthiness	Degree to which a <i>data store can be trusted</i> .	Complexity
			Data Governance
			Maturity
			Verifiability

Data Source, Provider, and Store



Enterprise Tier

Tier

Platform

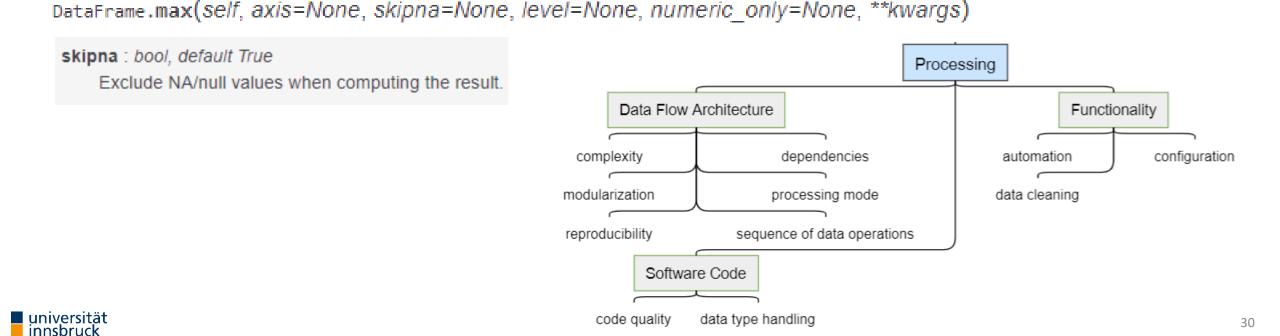
Edge Tier

Data Pipeline Quality

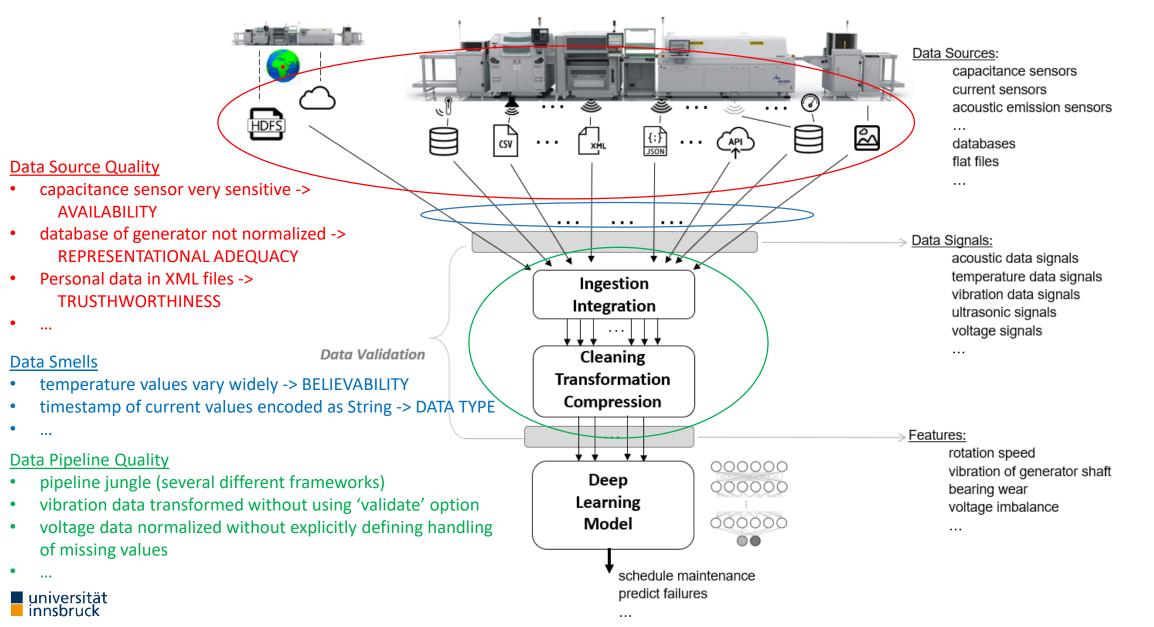
Issues of the implemented data pipeline that can affect the quality of the processed data

Code smells

 libraries Pandas vs. Numpy handling missing values differently by default (e.g. pandas.DataFrame.max vs. numpy.amax)



Predictive Maintenance Example



Agenda

Motivation

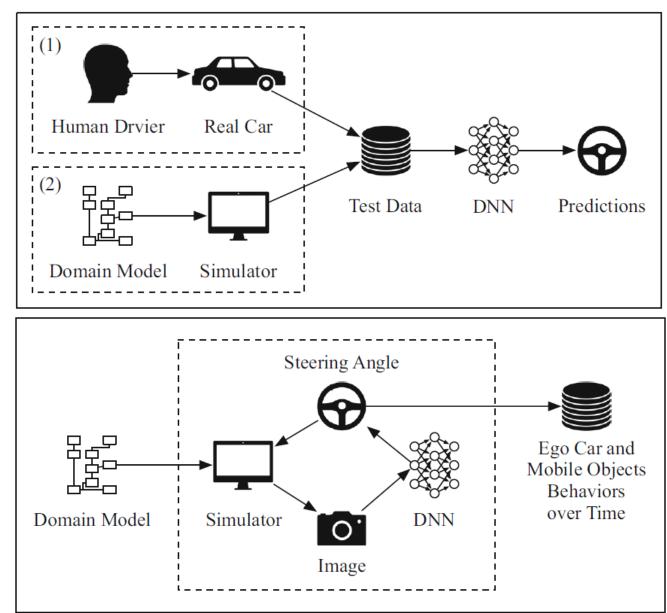
Classical Risk-Based Testing

Testing Machine-Learning-Based Systems

Data Testing

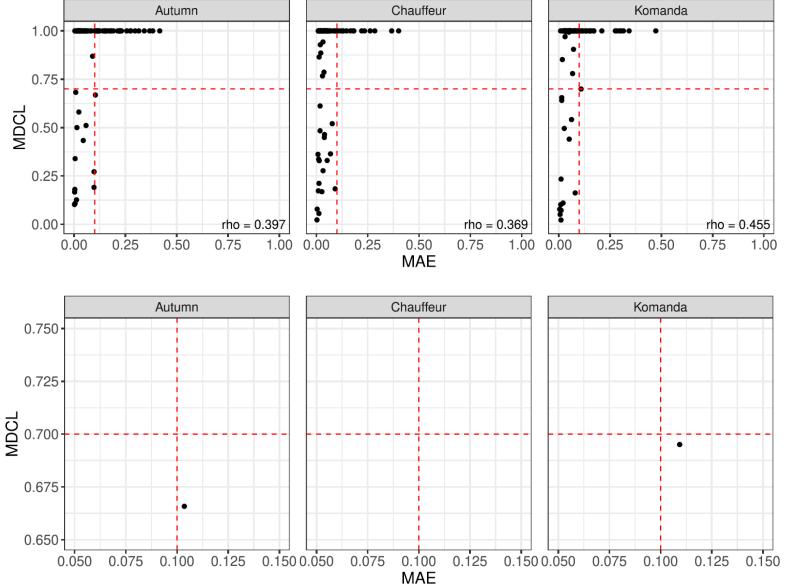
Offline and Online Testing

universität innsbruck



33

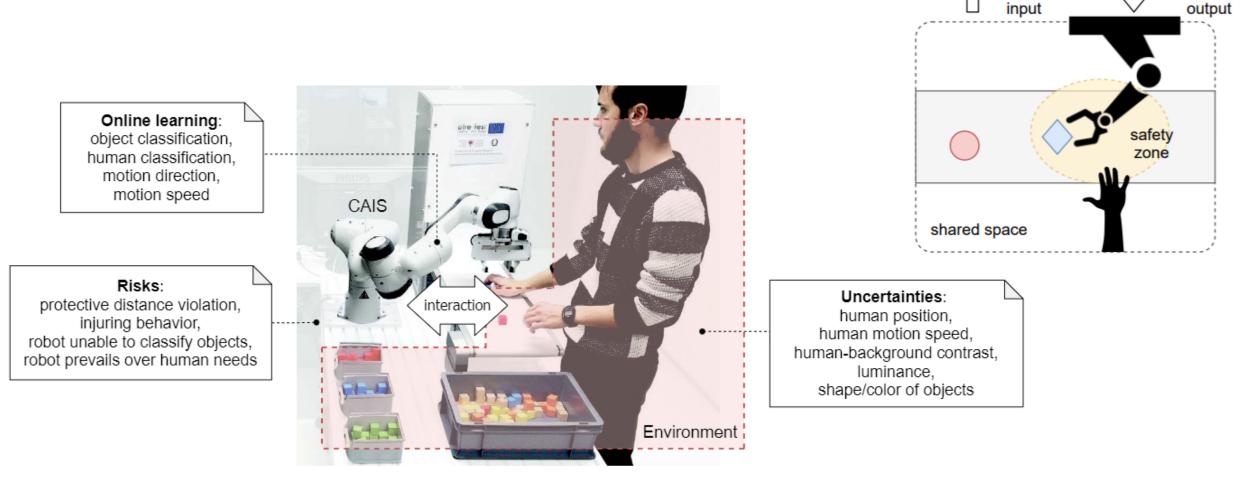
Comparison Offline and Online Testing Results



universität innsbruck Many safety violations identified by online testing could not be identified by offline testing

Offline testing cannot properly reveal safety violations

Collaborative AI Setting and Safety



ML visual perception

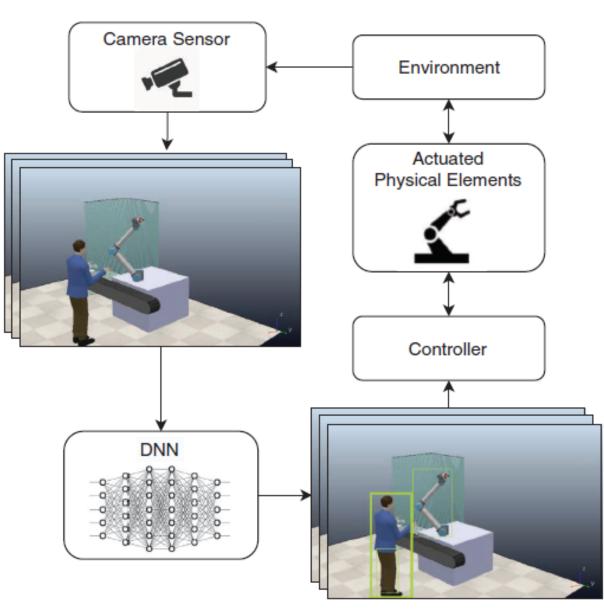
component

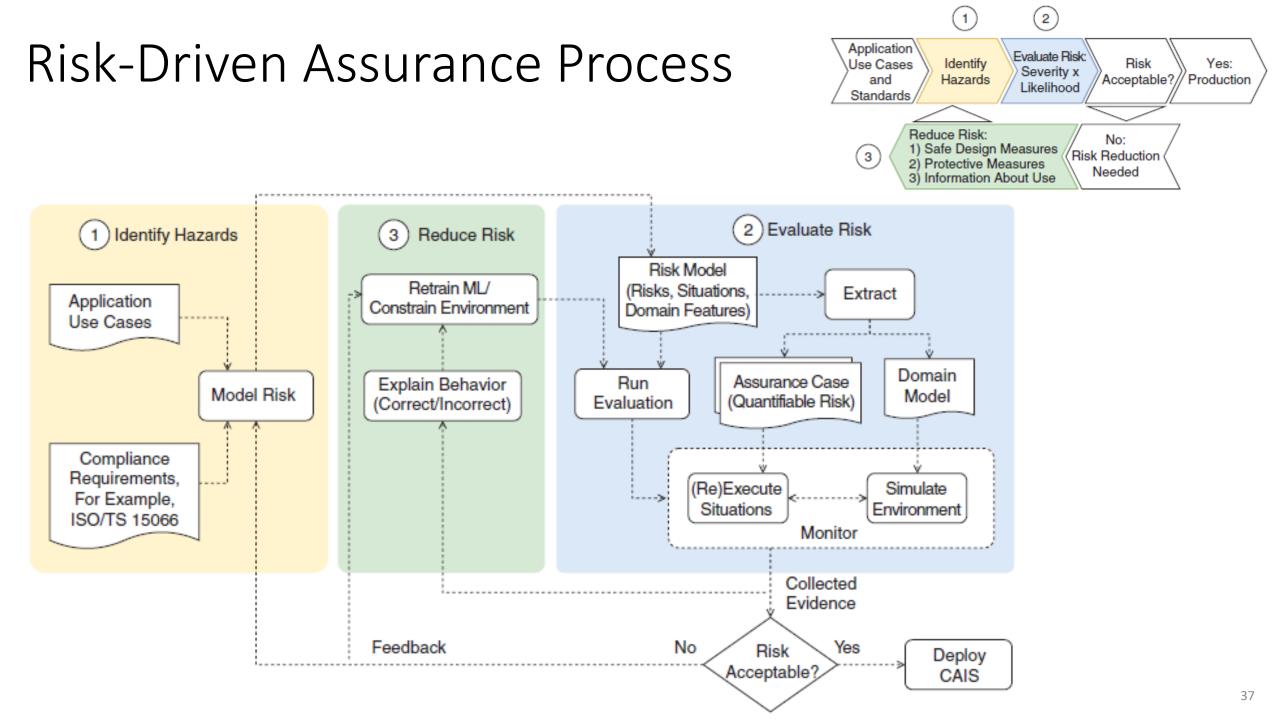
sensors

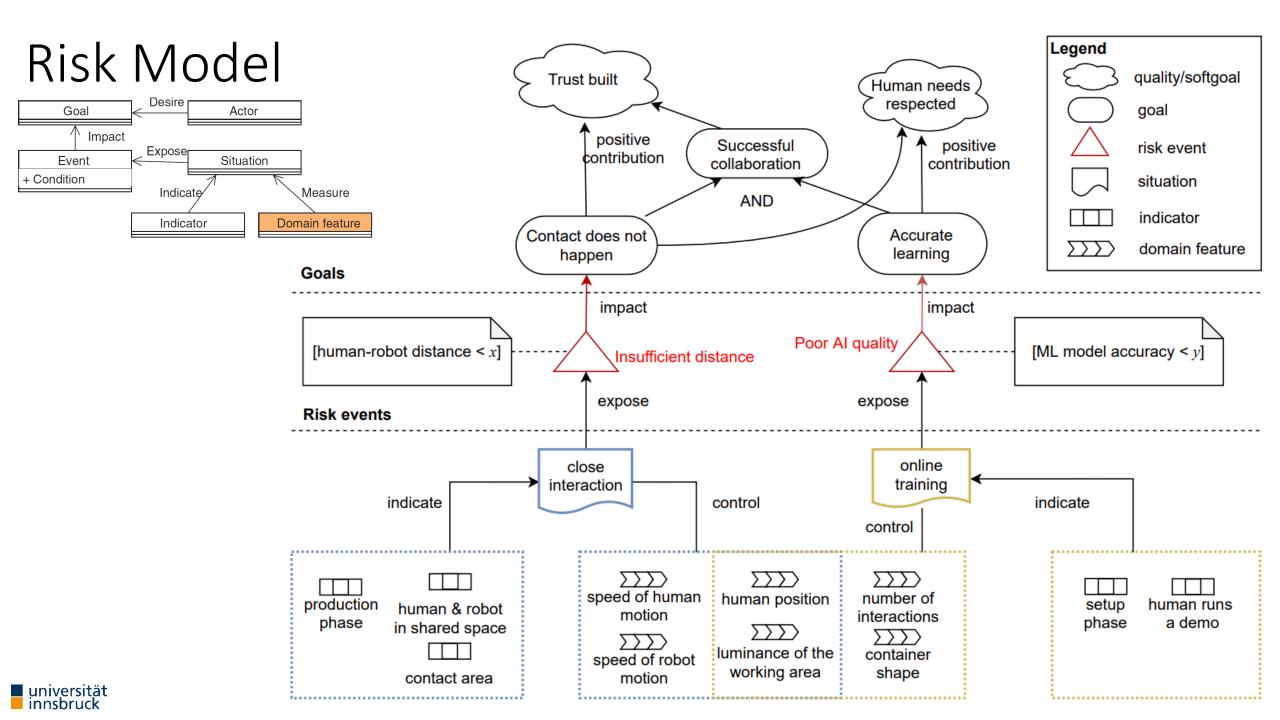
controller

actuators

Setting for Online Testing







Search Space Exploration and Risk Evaluation

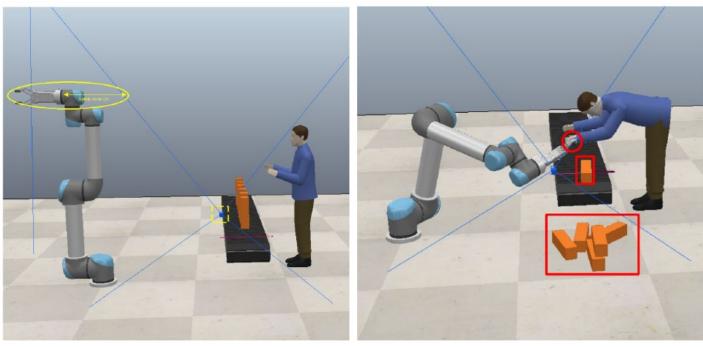
- **1. [Start]** Initialize simulator variables for path e.g., Given initial system states (s_0, n, u) and "m" number of runs such that: $s_0 = robot arm coordinates (R [x, y, z]), human position (H [x, y, z]),$ $n = 0 : 0, 1, 2 ... n \subseteq m$ U = []
- **2. [Input space]** "p" population of *key simulator features* (suitable solutions for the problem) which is the expected output: $F' \leq F$ (e.g., environment lighting (L [h, s, l])) Path trace during its execution ($v = (v_1, ..., v_p)$), implicitly determined within simulator
- **3.** [Fitness] Determine fitness function f(x) of each arrangement in the population that satisifies a value ϕ along the path v, e.g., $d(R, H) \leq \phi$
- **4.[Update]** The simulation rewards those path functions where an unsafe state is reached for instance with a "1" or otherwise "0", returns:

```
feature F' \subseteq U

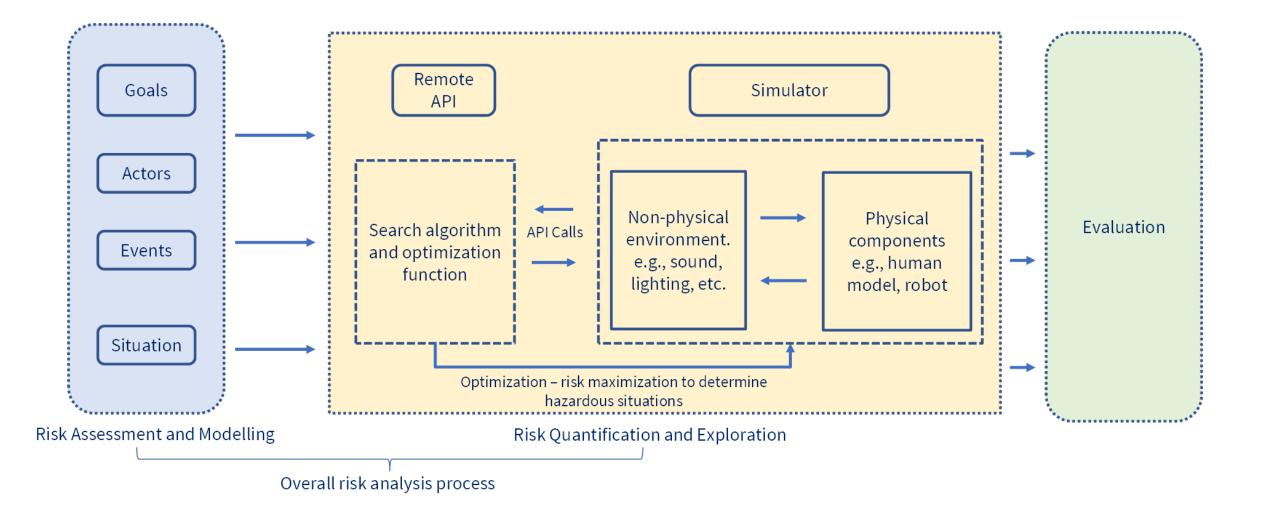
Ur = \begin{cases} 1, & dvi(R, H) \leq \phi \\ 0, & otherwise \end{cases}
```

- 5. [Increment] test case n = n + 1
- 6. [Repeat/Loop] : Step 2 until n = m
- 7. Return outcome \boldsymbol{U}

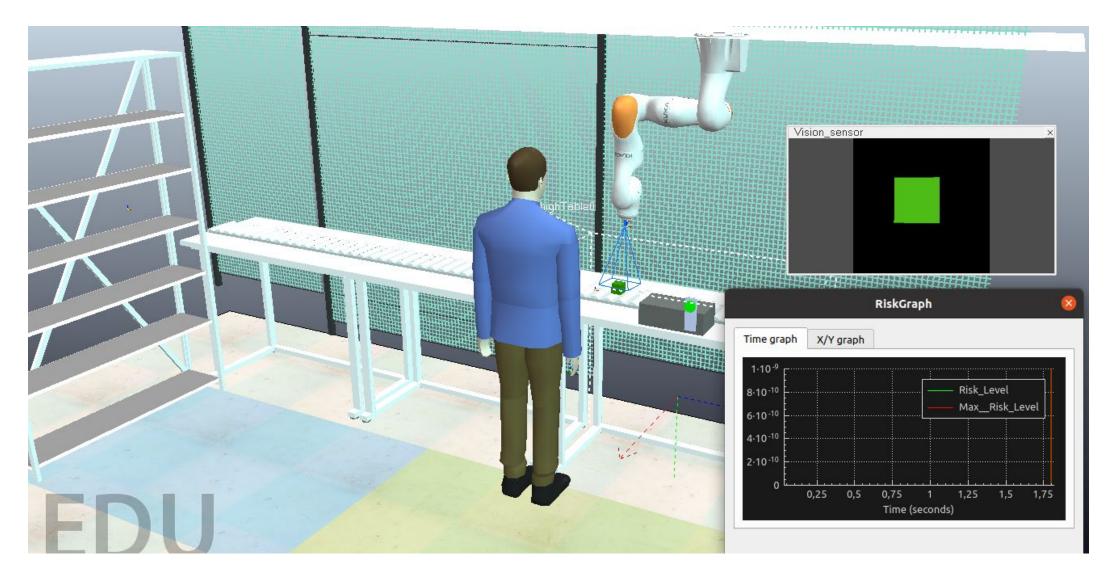
Objective Functions: Minimum distance between human and robot arm Relative speed of human and robot arm



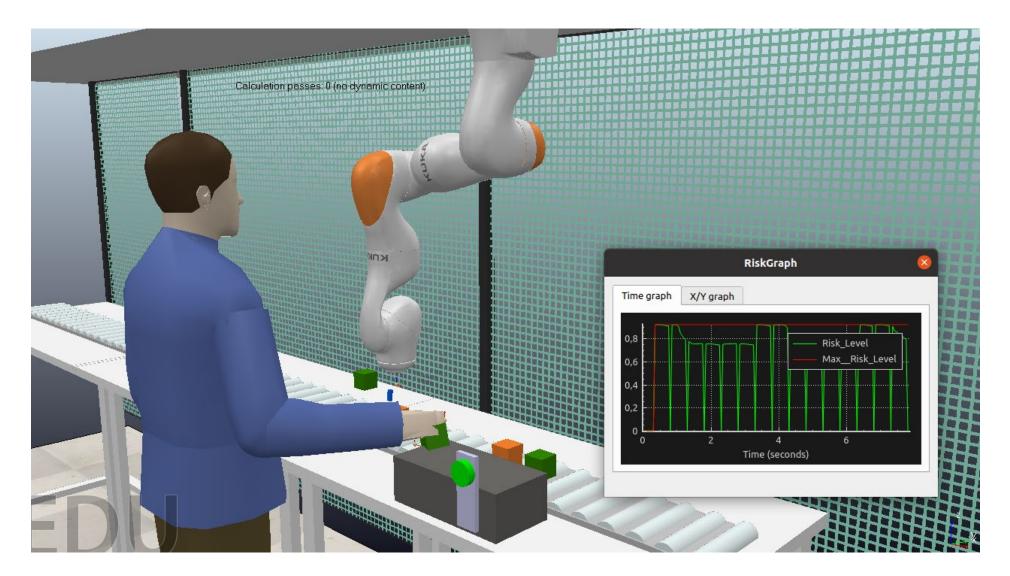
Test Environment



Simulation in CoppeliaSim (1/2)

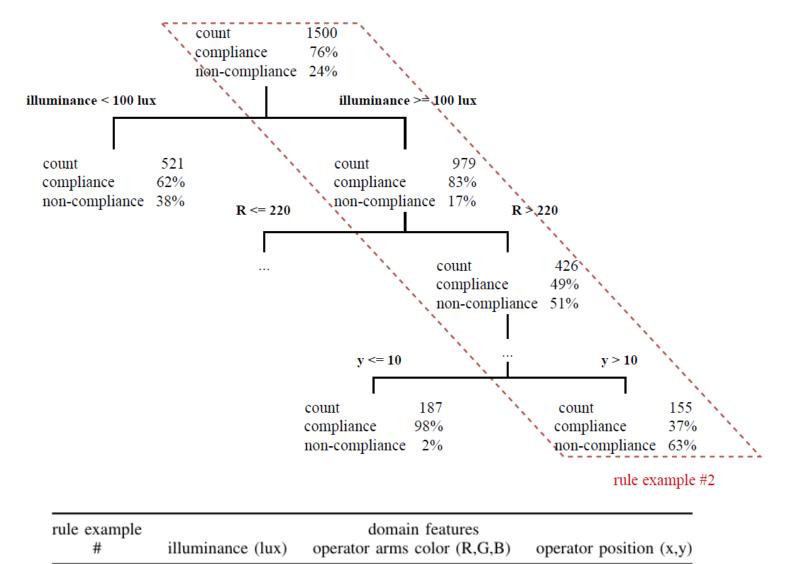


Simulation in CoppeliaSim (2/2)



Risk Quantification, Decision Tree and Rule Extraction

<100 > 100



R >220, G >236, B >200

x >180, y >10

Summary

Motivation

Classical Risk-Based Testing

Testing Machine-Learning-Based AI Systems

Data Testing

Online Testing

References

- [1] Zhang, Jie M., et al. *Machine learning testing: Survey, landscapes and horizons*. IEEE Transactions on Software Engineering, 2020
- [2] Riccio, Vincenzo, et al. *Testing machine learning based systems: a systematic mapping*. Empirical Software Engineering 25.6 (2020): 5193-5254.
- [3] Felderer, M., Schieferdecker, I. *A taxonomy of risk-based testing*. Software Tools for Technology Transfer, 16(5), 559-568, Springer, 2014
- [4] Foidl, H., Felderer, M.: Integrating software quality models into risk-based testing. Software Quality Journal, 26(2), 809-847, 2018
- [5] Foidl, H., Felderer, M., Ramler, R. *Data Smells: Categories, Causes and Consequences, and Detection of Suspicious Data in AI-based Systems*. 1st International Conference on AI Engineering (CAIN 2022), ACM, 2022
- [6] Haq, Fitash UI, et al. *Can Offline Testing of Deep Neural Networks Replace Their Online Testing*?. Empirical Software Engineering 26:5, 1-30, 2021
- [7] Adigun, Jubril Gbolahan, et al. *Collaborative Artificial Intelligence Needs Stronger Assurances Driven by Risks*. Computer 55:3, 52-63, 2022
- [8] Harel-Canada, F., et al. *Is neuron coverage a meaningful measure for testing deep neural networks*?. Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. 2020

Testing the Untestable: Risikobasierte Qualitätssicherung für Machine-Learning Systeme

Prof. Dr. Michael Felderer

Department of Computer Science

Universität Innsbruck

Austria

michael.felderer@uibk.ac.at

🕥 @mfelderer