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Quality and Risk in Software Development

Functionality
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Quality
Product

Risk
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Quality and Risk of ML-based Systems
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ML Systems are IT Systems not only Algorithms
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Sculley et al.: Hidden Technical Debt in Machine Learning Systems, NIPS 2012



What Makes (AI)ML-Based Systems Different?
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Functionality

ResourcesTime

Quality UncertaintyData Quality

New Quality 
Properties

Self-
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New Quality Properties: Trustworthiness of AI

8Deloitte's Trustworthy AI FrameworkEU Ethics Guidelines for Trustworthy AI



Machine-Learning Systems as Software Systems
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Data Issues

Implementation Issues

Model Issues

noisy labels

not enough data

incorrect data

deprecated features

bundled features

dead/experimental code

pipeline jungles

incorrect use of APIs

buggy third party libraries

platform-specific behavior 
(rounding, data type conversions)

Zhang, Jie M., et al. Machine learning testing: Survey, landscapes and horizons. IEEE Transactions on Software Engineering, 2020
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Risk-Based Testing (Risk-Based Quality Assurance)
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Test Planning

Test Design

Test Implementation

Test Execution

Test Evaluation

Test Planning

Test Design

Test Implementation
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Risk Concept in Software Quality Engineering
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What is the impact
if a defect occurs?

What is the probability
a defect will occur?

Technology-Oriented Criteria

𝑅𝑅 = 𝑃𝑃 ° 𝐼𝐼
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Asset (Risk Item)



Risk-Based Test Strategy
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Impact (I)

Probability (P)

I II

IVIII

Use Cases (incl. Alternatives)
Equivalence Classes
Code Coverage 70%

Use Cases (Basic Flow)
Code Coverage 50%  

Use Cases (Basic Flow)
Equivalence Classes
Code Coverage 70%

Use Cases (incl. Alternatives)
Boundary Value Analysis
Code Coverage 100%



Effectiveness and Efficiency of Risk-Based Testing
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Effectiveness
• Finding more defects
• Finding defects earlier
• Finding the critical defects
• ...

Efficiency
• Reduce time of testing
• Reduce cost of testing
• ...

MORE LESSTEST

Compliance
• Aligned with standard
• Minimizing critical risks
• ...
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ML Engineering and Testing
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Offline 
Testing

Online 
Testing

Data 
Testing



Offline and Online Testing
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Offline Testing:
• Testing ML model as standalone component
• ML model tested as a unit in open loop mode

Online Testing:
• Testing ML model in real or simulated environment
• ML model tested as a unit in closed loop mode



White-Box and Black-Box Testing?

18



Offline vs. Online Testing

19

White-box Data-box Black-box

Data

Model

Integration

System

Offline Testing

Online Testing



Offline Testing (White Box)

Neuron Coverage is not strongly and positively correlated with defect detection and naturalness.
20Harel-Canada, F., et al. Is neuron coverage a meaningful measure for testing deep neural networks?. Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. 2020



Test Levels for Machine-Learning Systems
Four Test Levels
• Input Testing

• Model Testing
• Integration Testing
• System Testing

21Riccio, Vincenzo, et al. Testing machine learning based systems: a systematic mapping. Empirical Software Engineering 25.6 (2020): 5193-5254.
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Idea of Risk-Based Data Testing
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Risk-Based Data Testing Framework

24

Probability (P) Impact (I)

Risk Value

Feature (Risk Item)

Risk LevelValidation Techniques
Validation Rigor

Validation Automation
Validation Prioritization Risk-Based Data Validation Strategy

Business-Oriented Criteria

Validation Frequency

Technology-Oriented Criteria

Impact of low data 
quality of feature on 
model performance

Probability that feature 
is of low data quality

Data 
Source 
Quality

Data 
Smells

Data 
Pipeline 
Quality

Feature 
Importance



Data Smell Types

25

Context-independent, data value-based indications 
of latent data quality issues caused by poor practices 

that may lead to problems in the future.



Example Smells
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Date as Date/Time Smell Ambiguous Date/Time Format Smell
https://www.kaggle.com/joniarroba/noshowappointments https://www.kaggle.com/ravichaubey1506/covid19-india



Data Smell Detection Tools
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Data Source Quality Model

28

Description Properties and 
Subquality Factors

Schema Minimality
Schema Normalization
Schema Pertinence
Data Format Variety
Data Type Variety
Schema Change Proneness
Data Format Complexity
Documentation Degree
Metadata Quality
Schema Readability
Access Maturity
Operability 
Retrievability
Durability
Fault Tolerance
Recoverability
Scalablity
Uptime
Authentification/Encryption
Authorization Policy
Refresh Rate
Response Time
Schema Completeness
Schema Correctness

Contactability Degree to which a data store provides contact information for further inquiries. Support Degree
Complexity
Data Governance 
Maturity
Verifiability

Degree to which a data store is able to represent every meaningful state of the 
real world.

Trustworthiness        Degree to which a data store can be trusted .

Accessibility Degree to which data are easily and quick ly retrievable.

Availability Degree to which data are available  from a data store.

Security Degree to which access to data for unauthorized persons is restricted  by a data 
store.

Degree to which a data store provides up-to-date data in a timely manner.

Degree to which a data store presents data in a concise and organized way .        

Representational 
Consistency

Degree to which a data store presents data always in the same format and 
compatible with previous data.

Understandability Degree to which users can understand the data provided by a data store.

Representational 
Data Store 

Quality

Dynamical Data 
Store Quality

Statical Data 
Store Quality

Quality Characteristics

Representational 
Adequacy

Timeliness

Completeness



Data Source, Provider, and Store
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Data Pipeline Quality
Issues of the implemented data pipeline that can affect the quality of the 
processed data
Code smells
• libraries Pandas vs. Numpy handling missing values differently by default 

(e.g. pandas.DataFrame.max vs. numpy.amax)

30



Predictive Maintenance Example

31

Data Source Quality
• capacitance sensor very sensitive -> 

AVAILABILITY
• database of generator not normalized ->

REPRESENTATIONAL ADEQUACY
• Personal data in XML files ->

TRUSTHWORTHINESS
• …

Data Smells
• temperature values vary widely -> BELIEVABILITY
• timestamp of current values encoded as String -> DATA TYPE
• …

Data Pipeline Quality
• pipeline jungle (several different frameworks)
• vibration data transformed without using ‘validate’ option
• voltage data normalized without explicitly defining handling 

of missing values
• …
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Offline and Online Testing

33Haq, Fitash Ul, et al. Can Offline Testing of Deep Neural Networks Replace 
Their Online Testing?. Empirical Software Engineering 26:5, 1-30, 2021



Comparison Offline and Online Testing Results

34

Many safety violations identified by online 
testing could not be identified by offline 

testing

Offline testing cannot properly reveal 
safety violations

MDCL: Maximum Distance from Center of Lane (Online Testing)
MAE: Mean Absolute Error (Offline Testing)



Collaborative AI Setting and Safety
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Setting for Online Testing
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Risk-Driven Assurance Process

37



Risk Model
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Search Space Exploration and Risk Evaluation

39

1. [Start] Initialize simulator variables for path  e.g., Given initial system states (s0 , n, U) and “m” number of runs such that:
s0 = robot arm coordinates (R [x, y, z]), human position (H [x, y, z]), 
n = 0 : 0, 1, 2 … n ⊆ m
U = []

2. [Input space] “p” population of key simulator features (suitable solutions for the problem) which is the expected output:
F’ ≤ F (e.g., environment lighting (L [h, s, l]))
Path trace during its execution (v = (v1, ...,vp)), implicitly determined within simulator

3. [Fitness] Determine fitness function f(x) of each arrangement in the population that satisifies a value along the path v, e.g., 
d(R, H)  ≤ 

4.[Update] The simulation rewards those path functions where an unsafe state is reached for instance with a “1” or otherwise 
“0”, returns:

feature F’ ⊆ U

Ur = 

5. [Increment] test case n = n + 1
6. [Repeat/Loop] : Step 2 until n = m
7. Return outcome U

Objective Functions:
Minimum distance between human and robot arm
Relative speed of human and robot arm



Test Environment
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Simulation in CoppeliaSim (1/2) 
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Simulation in CoppeliaSim (2/2)
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Risk Quantification, Decision Tree and Rule Extraction
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Summary
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