

TESTING IN A LARGE SCALE AGILE DEVELOPMENT ENVIRONMENT

CONTENT/AGENDA

- 1. Introduction
- 2. Agile on a large scale
- 3. Testing in a large scale agile environment
- 4. Conclusion

INTRODUCTION

> Ericsson:

- The leading vendor for mobile network infrastructure
- > Tough competition on the telecommunication market:
 - Number of competitors
 - Merging of traditional Circuit Switched Technology and Packet Switched Technology towards all IP Network

Motivation:

- Increase the feedback loops towards design
- Delivery of high quality products to the customer
- Being flexible to adapt faster to the market's demand
- Early and Frequent Delivery

AGILE ON A LARGE SCALE

AGILE

Manifesto for Agile Software Development

- We are uncovering better ways of developing software by doing it and helping others do it.
 Through this work we have come to value:
 - Individuals and interactions over processes and tools
 - Working software over comprehensive documentation
 - Customer collaboration over contract negotiation
 - Responding to change over following a plan
- > That is, while there is value in the items on the right, we value the items on the left more.

SCRUM IN A NUTSHELL

One team collaborating to one feature

LARGE SCALE

- Chief Product Owner: 1
- Number of Product owners: 5
- Number of Scrum teams: 8
- Size of the teams: 6-8
- Number of Scrum Masters: 8
- Number of people: around 70
- Number of locations: 4
- Number of Releases: 2
- Number of manhours: ~100000
- Number of User Stories: ~700

LARGE SCALE

- Our legacy: The Ericsson Mobile Soft Switch
- > 8085042 PLEX statements
- > 20212606 ASA instructions corresponding to approximately 95000000 Intel instructions
- > 2196 SW blocks

TESTING IN A LARGE SCALE AGILE ENVIRONMENT

- > Cross functional team of 7 +/- 1 SW developers:
- Virtual teams
- Synchronized sprints inside a feature
- Common Backlog
- Common ceremonies to keep everybody informed

Backlog Setup strictly based on functional areas

Backlog Setup strictly based on functional areas

- > Risk of dependencies between User Stories
- Difficulties to test from an "end to end" perspective
- More planning needed
- > Prone to generate delays

Backlog Setup with end to end focus and functional areas

Backlog Setup with end to end focus and functional areas

- Testing possible from "end to end" perspective as the User Story is concluded
- > Less planning needed
- Reduce dependencies due to functional areas
- Coordination might increase
- Competence build through training on the job and mix of competences

Setup of virtual teams

System Architecture Team

Scrum of Scrum

Setup of virtual teams

- > Overview over the activities with higher priority
 - Testing, Architecture, Software Delivery, Organizational topics

TEST OVERVIEW

Note: Simplified view, details on following slides

TESTING ACTIVITIES

1: taken from Crispin/Gregory: Agile Testing, Addison Wesley, 2009

TESTING ACTIVITIES

- > Q1 Kind of tests are
 - Unit tests testing small pieces of code
 - System Module Tests test that units work together correctly
- Q2 Kind of tests are
 - Functional & Integration tests positive and deterministic negative tests, if possible to automate
 - User Story Acceptance Tests

TESTING ACTIVITIES

> Q3 Kind of tests

- Exploratory Testing feedback into stories
- Feature Test and Regression Test with Background Traffic
- (early) Characteristics

> Q4 Kind of tests

- Dimensioned Load on LLV/LSV
- High Load/Overload on LSV (most likely)
- Parafunctional tests (Performance, stress)
- Interoperability, Security

TEST DETAILED VIEW

Detailed view on Testing Timeframe Team D **Unit Test** Team C **Functional Test** Feature2 **Integration Test** Team B Team A Feature1 LSV Main

CONTINUOUS INTEGRATION

"...a software development practice where members of a team integrate their work frequently, usually each person integrates at least daily – leading to multiple integrations per day. Each integration is verified by an automated build (incl. test) to detect its errors as quickly as possible..."

Martin Fowler

CI WORKFLOW

TEST TOOLS & ENVIRONMENT

TEST TOOLS & ENVIRONMENT

> Unit Test:

- Ericsson proprietary tool testing the interfaces

> Function Test:

- Manual: using a simulated environment simulating all nodes but with the possibility to load the real MSC software
- Automated: using a proprietary tool with an open source framework based on TTCN-3

> Regression Test:

- Based on the automated test cases from the Function Test
- Running on a Continuous Integration Server (Jenkins)
- > Feature load (moderate/high/overload):
 - Proprietary tool based on TTCN-3 generating load on the real environment

CONCLUSION/WRAP-UP

Challenges

- Coordination
- Maintenance of a high reliability
- > Working high quality Legacy
- > Documentation
- > Test tool & environment

CONCLUSION

Benefits

- > Eliminate waste
- > Early indication of Software Quality
- > Early corrective actions possible
- > Reduce test time enabling earlier release of product
- > Enabling of Continuous Integration as first step towards a possible Continuous Delivery
- > Early customer involvement

CONCLUSION

- Manifesto for Agile Software Development
- We are uncovering better ways of developing software by doing it and helping others do it.
 Through this work we have come to value:
 - Individuals and interactions over processes and tools
 - Working software over comprehensive documentation
 - Customer collaboration over contract negotiation
 - Responding to change over following a plan
- > That is, while there is value in the items on the right, we value the items on the left more.

ERICSSON